LU WU 2015 River runoff and nitrate loading simulation for the land use changes in the Takasaki River basin in Chiba, Japan

E.D.P. Perera, Y. Iwami, Y. Chida

International Centre for Water Hazard and Risk Management (ICHARM) under the auspices of UNESCO, Public Works Research Institute (PWRI), 1-6, Minamihara, Tsukuba, Ibaraki, Japan. Email: <u>perera55@pwri.go.jp</u>

Abstract: The present study makes an attempt to evaluate the possible impacts of land use changes on hydrologic and nitrate loading responses using a numerical model, available land use, river runoff and nitrogen (N) loading data for a small river basin of 85 km2 named as Takasaki River. The existing land use types in the basin consist of 22.7% forests, 9.0% rice fields, crop lands 33.4%, urban areas 34.1%, and water bodies 0.8%. The nutrient contributions to the river from different Point Sources (PS) and Non-Point Sources (NPS) are accommodated in the developed model. Agricultural areas, forests and urban areas are considered as NPS within the model. N discharges from different land use types have a significant contribution to the river water quality. At this end the updated WEP model is applied to understand the impact of land use changes' contribution to the Takasaki River runoff. A qualitative analysis of the land use changes is conducted by simulating two land use scenarios within the river basin for the period of 5 years. The two scenarios considered are: Scenario -A: 80% crop area converted into urban areas (urbanization), Scenario - B: 80% crops land area is converted to forests (afforestation). The model was executed with the observed rainfall for 2006 to 2010 to check the variation of river runoff and N loading. The obtained results are compared with the simulation results which are obtained under the exiting conditions of the basin for the aforementioned time duration. For the Scenario – A, the 5 year averaged annual water volume passed through the monitoring point has been increased 2.6 % compared to the calculated results of existing condition while for the Scenario – B, same comparison shows a decrement of 0.12 %. The annual averaged N loading for the Scenario – A shows significant increments compared to the natural condition simulation results. The increments are 23.2% and 4.2% in the A and B scenarios respectively.

- NPS pollution traits and why suppression is important?
- **Extremely difficult to trace, monitor and manage**
- NPS pollutants build up on land surfaces mainly during dry weather
 - Fertilizer applications + Animal waste (Agricultural diffuse sources)
 - Atmospheric deposition
 - Automotive exhaust/fluid leaks
- Pollutants are washed-off land surfaces during precipitation events (mainly stormwater runoff; partly subsurface paths via infiltration)
- Stormwater runoff will flow into lakes and streams => accumulation...

Status of water quality/watershed management today....

Today, the NPS pollution is the cause for **MOST REAMAINING water quality problems in many watersheds...!!!**

Actual state of water quality in river

tatus ...

Physically-based processes simulated in WEP hydrologic model.

The Water and Energy Processes transfer model is a grid-based distributed

Subsurface flow

Structure of WEP model

ICHARM

Overview of river basin and background

Vertical structure of the WEP model

Model Calibration for 2005 River Discharge and TN Data

Case A: 80% Crop area is converted into Urban area

Case B: 80% Crop area is converted into Forest

Land use type	Existing		Case A		Case B	
Forest	22.7%	19.3 km ²	22.7%	19.3 km ²	49.4%	42.0 km ²
Crop Lands	33.4%	28.4 km ²	6.7%	5.7 km ²	6.7%	5.7 km ²
Urban/Residential	34.1%	29.0 km ²	60.8%	51.7 km ²	34.1%	29.0 km ²
Rice fields	9%	7.7 km ²	9%	7.7 km ²	9%	7.7 km ²
		2				

Case B: Water volume decreased 0.12% and TN increased 4.2%